If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80x-16x^2-96=0
a = -16; b = 80; c = -96;
Δ = b2-4ac
Δ = 802-4·(-16)·(-96)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-16}{2*-16}=\frac{-96}{-32} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+16}{2*-16}=\frac{-64}{-32} =+2 $
| 50=3(s+16)-2(s-2 | | w+5/6=4 | | u/9+43=51 | | 1+5/3=(7/3x) | | (x-40)/(x)=(1/6) | | 6(z+10)=96 | | 60(z+10)=96 | | (-3+7i)-(14-6i)=17+1 | | 2=2(k-49) | | 20-3z=11 | | (2x+56)=(6x+8) | | 12=w/4=10 | | 8(x+9/5)=-48/5 | | 6x+9/2=-27/2 | | -3x/(4)-2=-35/4 | | -3x/4-2=-35/4 | | 36n=72+5 | | 9x2+18x−11=0 | | 6(x-7)+2=-88 | | q-(47/6)=(13/2) | | 5(x+6)+3=18 | | -5(v-1)=-2v-16 | | (3x+10=22) | | 75-x+57+2x=0 | | 2-10n+5n=10-88 | | (3)x=3/5 | | (3+u)(5u+9)=0 | | 75-x=57+2x | | 0.25(3x-2)-2.5(2x+4)=-425x+2 | | 32^x=12 | | 9=360/n | | 3x+8=6x5 |